A CINNAMOYL PYRROLIDINE AMIDE FROM PIPER PEEPULOIDES

SHARDA SHAH, ASHOK K. KALLA and K. L. DHAR*

P. G. Department of Chemistry, Kashmir University, Srinagar, India; *Natural Products Chemistry Division, Regional Research Laboratory, Jammu Tawi 180001, India

(Revised received 7 January 1986)

Key Word Index—Piper peepuloides; Piperaceae; leaves; amides; terpenoids.

Abstract—Analysis of a petrol extract of the leaves of *Piper peepuloides* resulted in the isolation of a new cinnamoyl pyrrolidine amide characterized as Z-pyrrolidine-1-3-(6-methoxy-1,3-benzodioxol-5-yl)-1-oxo-2-propenyl along with peepuloidin, 2-methoxy-4,5-methylenedioxy-Z-cinnamoyl piperidide, β -sitosterol and β -sitosterol glucoside.

INTRODUCTION

In continuation of our work on the chemistry of various *Piper* species, we wish to report a new cinnamoyl pyrrolidine amide, namely Z-pyrrolidine-1,3-(6-methoxy-1,3-benzodioxol-5-yl)-1-oxo-2-propenyl besides other known amides and terpenoids isolated from a petrol extract of *P. peepuloides*. Such amides with *cis*-geometry at C-1',2' are quite rare in nature, although, prior to this report, a new cinnamoyl piperdide amide with a *cis* double bond at C-1',2' has been reported by Dhar *et al.* [1] from the same plant. Incidentally there is no report of a *trans* isomer of cinnamoyl pyrrolidine amide from a natural sources although it has been synthesized [2].

RESULTS AND DISCUSSION

The petrol extract of P. peepuloides on CC over silica gel gave two known amides characterized as peepuloidin [3] and 2-methoxy-4,5-methylenedioxy-Z-cinnamoyl piperdide. However, careful examination of the fractions containing peepuloidin, on TLC and under UV light revealed the presence of two distinguishable UV fluorescent compounds with very close R₁ values. Repeated CC of these fractions over silica gel afforded peepuloidin in addition to a very minor compound 1 at slightly lower R_{ℓ} . Compound 1 on repeated crystallization from ethyl acetate-petrol furnished white needles, mp 118°. It analysed for $C_{15}H_{17}O_4N$ ([M] + m/z 275). The UV spectrum displayed bands at 336 and 274 nm indicating the presence of an $\alpha \beta$ -unsaturated system in the molecule. The IR spectrum exhibited bands at 1650 (α,β -unsaturated amide carbonyl), 1260, 1040 and 930 cm⁻¹ (methylene dioxy grouping). However, the IR showed no peaks corresponding to an NH group, indicating that nitrogen could be in the form of a tertiary amide.

Compound 1 on catalytic hydrogenation over Pd-C furnished a dihydro derivative, which analysed for $C_{15}H_{19}O_4N$, absorbing one mole of hydrogen, thereby indicating the presence of only one double bond in the molecule. Its ¹H NMR spectrum (CDCl₃, 90 MHz) displayed a characteristic pair of AB doublets (J = 12.6 Hz) each integrating for one proton at $\delta 5.86$ and $\delta 6.88$

assigned to protons at the α and β positions of an α,β -unsaturated carbonyl system. Comparison of the chemical shifts and J values of these protons with the piperdide derivative of the present compound suggested that the double bond was cis. Two triplets at $\delta 3.24$ and 3.46 (each integrating for two protons) due to the methylenes adjacent to the nitrogen gave a further clue to the cisgeometry at the double bond due to restricted rotation of the N-C=O group, making the two methylenes non-equivalent. A multiplet (4H) at $\delta 1.82$ was due to the two other methylenes of the pyrrolidine ring. A singlet (2H) at $\delta 5.86$ and another singlet (3H) at $\delta 3.88$, were due to the

3

1998 Short Reports

methylenedioxy and aromatic methoxyl groups, respectively. Two sharp singlets, each of 1H, at δ 6.46 and 7.4 were due to two aromatic protons para to each other. The chemical shifts of these protons indicated the placement of the methoxyl function at C-6 and the methylenedioxy group at C-8 and C-9. The mass spectrum in addition to the [M]⁺ at m/z 275 showed a prominent peak at m/z 205 [M - C₄H₈N]⁺ due to the loss of a pyrrolidine moiety. All other mass fragments in the mass spectrum and the ¹³C NMR spectrum were consistent with the proposed structure 1 for the amide.

The structure 1 was further confirmed by synthesis, following the procedure of Dhar et al. [1] using pyrrolidine instead of piperdine in the last step. The synthesized product showed identical NMR and a superimposable IR with that of 1. In order to confirm the various ¹³C NMR assignments two novel model amides were prepared. Coumarin was converted into 1-oxo-3-(5-ethoxy phenyl)-2Z-propenyl-1-pyrrolidine (2, mp 86°) and 1-oxo-3-(5-ethoxy phenyl)-2E-propenyl-1-pyrrolidine (3, mp 120°).

EXPERIMENTAL

Air dried, finely powdered leaves (500 g) of P. peepuloides were extracted exhaustively with petrol (60–80°) (3 × 2 l.). The petrol extracts upon concn under vacuum afforded a residue (100 g). The residue (10 g) on CC over silica gel (600 g) was eluted successively with n-hexane-EtOAc mixtures of increasing polarity. Fractions obtained with n-hexane-EtOAc (9:1, 4:1, 7:3 and 3:7) furnished β -sitosterol (mp 138°), its glucoside (mp 268°), 2-methoxy-4,5-methylenedioxy-Z-cinnamoyl piperidide (mp 98°) and peepuloidin (mp 149°), respectively. Compound 1 was obtained from n-hexane-EtOAc (3:7) eluates as white needles (100 mg) $R_f = 0.6$ (C_6H_6 -EtOAc, 6:4), mp 118°. Found: C, 65.42; H, 6.20; N, 5.05. Required C, 65.44; H, 6.22; N, 5.08%. EIMS (probe) 70 eV, m/z (rel. int.): 275 [M]* (20), 246 (35), 244 (80), 205 (80), 175 (30), 162 (20) and 28 (100). ¹³C NMR (CDCl₃, 90 MHz) 24.0 (t, C-3"), 30.0 (t, C-4"), 46.0 (t, C-2"), 47.0 (t, C-5")

57.0 (q, Ar-OMe), 95.0 (d, C-7), 101.5 (t, C-2), 109.0 (d, C-2'), 117.0 (s, C-5), 122.0 (d, C-4), 129.5 (d, C-1'), 141.0 (s, C-9), 147.5 (s, C-8), 153.0 (s, C-6) and 165.5 (C=O).

¹H NMR (CDCl₃) of dihydroderivative: δ 6.64 (1H, s, H-4), 6.44 (1H, s, H-7), 5.84 (2H, s, H-2), 3.68 (3H, s, Ar-OMe), 3.40 (4H, m, H-2", H-5"), 2.82 (2H, m, H-1'), 2.26 (2H, m, H-2'), 1.82 (4H, m, H-3", H-4"). 1H NMR (CCl₄) of 1-oxo-3-(5-ethoxy phenyl)-2-Zpropenyl 1-pyrrolidine: δ 7.5 (1H, d, H-3, J = 12 Hz), 7.2 (4H, m, H-6, 7, 8, 9), 5.8 (1H, d, H-2, J = 12 Hz), 4.1 (2H, q, Ar-OCH₂Me), 3.4 (2H, t, H-2'), 3.1 (2H, t, H-5'), 1.6 (4H, m, H-3', 4'), 1.4 (3H, t, Ar-OCH₂Me), 13 C NMR (CDCl₃, 100 MHz): δ 15.4 (q, C-OCH₂Me), 24.9 (t, C-4'), 26.7 (t, C-3'), 46.4 (t, C-5'), 47.6 (t, C-2'), 64.2 (t, C-OCH₂Me), 111.8 (d, C-2), 121.3 (d, C-6), 122.9 (d, C-8), 124.2 (s, C-4), 129.7 (d, C-3), 130.5 (d, C-9), 131.0 (d, C-7), 153.2 (s, C-5), 163.0 (C=O). 1H NMR (CCl₄) of 1-oxo-3-(5-ethoxy phenyl) 2-E-propenyl-1-pyrrolidine: $\delta 8.1$ (1H, H-3, J = 16 Hz, 7.2 (4H, m, H-6, 7, 8, 9), 6.4 (1H, d, H-2), 4.1 (q, 2H, Ar-OCH₂Me), 3.6 (m, 4H, H-2', 5'), 2.0 (m, 4H, H-3', 4'), 1.4 (3H, t, Ar-OCH₂Me). ¹³C NMR (CDCl₃, 200 MHz). δ 14.8 (q, Ar–OCH₂Me), 24.2 (t, C-3'), 26.1 (t, C-4'), 45.8 (t, C-2'), 46.4 (t, C-5'), 63.8 (t, Ar-OCH₂Me), 111.9 (d, C-2), 119.0 (d, C-6), 120.3 (d, C-8), 129.3 (s, C-4), 129.6 (d, C-9), 130.4 (d, C-7), 136.5 (d, C-3), 157.7 (s, C-5), 164.4 (C=O).

Acknowledgements—We are thankful to Instrumentation Division, Regional Research Laboratory, Jammu for running the spectra and one of us (S.S) offers thanks to Dr. C. K. Atal, Director, for permission to work at RRL, Jammu.

REFERENCES

- Sehgal, C. K., Kachroo, P. L., Sharma, R. L., Taneja, S. C., Dhar, K. L. and Atal, C. K. (1979) Phytochemistry 18, 1865.
- Linke, S., Kurz, J. and Zeiler, H. J. (1982) Justus Liebigs Ann. Chem. 6, 1142.
- Atal, C. K., Moza, P. N. and Pelter, A. (1968) Tetrahedron Letters 11, 1397.